Quasiconformal Geometry of Monotone Mappings

نویسنده

  • LEONID V. KOVALEV
چکیده

This paper concerns a class of monotone mappings in a Hilbert space that can be viewed as a nonlinear version of the class of positive invertible operators. Such mappings are proved to be open, locally Hölder continuous, and quasisymmetric. They arise naturally from the Beurling-Ahlfors extension and from Brenier’s polar factorization, and find applications in the geometry of metric spaces and the theory of elliptic partial differential equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An N-Dimensional Version of the Beurling-Ahlfors Extension

We extend monotone quasiconformal mappings from dimension n to n + 1 while preserving both monotonicity and quasiconformality. The extension is given explicitly by an integral operator. In the case n = 1 it yields a refinement of the Beurling-Ahlfors extension.

متن کامل

00 1 ∂ - equations , integrable deformations of quasiconformal mappings and Whitham hierarchy ∗

∂-equations, integrable deformations of quasiconformal mappings and Whitham hierarchy * B. Konopelchenko Abstract It is shown that the dispersionless scalar integrable hierarchies and, in general, the universal Whitham hierarchy are nothing but classes of integrable deformations of quasiconformal mappings on the plane. Examples of deformations of quasiconformal mappings associated with explicit...

متن کامل

Bhaskar-Lakshmikantham type results for monotone mappings in partially ordered metric spaces

In this paper, coupled xed point results of Bhaskar-Lakshmikantham type [T. Gnana Bhaskar, V.Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, NonlinearAnalysis 65 (2006) 1379-1393] are extend, generalized, unify and improved by using monotonemappings instead mappings with mixed monotone property. Also, an example is given to supportthese improvements.

متن کامل

A SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS

We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...

متن کامل

Convex functions and quasiconformal mappings

Continuing our investigation of quasiconformal mappings with convex potentials, we obtain a new characterization of quasiuniformly convex functions and improve our earlier results on the existence of quasiconformal mappings with prescribed sets of singularities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006